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Abstract
In previous work we have suggested obtaining rational interpolants of a function f by
attaching optimally placed poles to its interpolating polynomials. For a large number of
interpolation points these polynomials are well-known to be good approximants only if
the nodes tend to cluster near the endpoints of the interval, as with Ceby~ev or Legendre
points. In practice, however, one would prefer to have them closer to equidistant. This
will in particular be the case when the difficult portion of f lies well within the interior
of the interval, or when approximating derivatives of f, as in the solution of differential
equations. To address this difficulty, we use here a conformal change of variable to shift
the points from the Cebygev position toward a more equidistant distribution in a way
that should maintain the exponential convergence when f is analytic. Numerical examples
demonstrate the resulting improvement in the quality of the approximation.

1 Introduction
We are concerned here with rational approximation of a continuous function f on an
interval [a, b], which we may take as [-1, 1] =: I, after a linear change of variable when
necessary. We further assume that the approximant r should interpolate f between a
finite number, say N + 1, of distinct points (nodes) xo, x 1 ... , XN in I. In a similar way
as in [5], r will be constructed by attaching a certain number of poles to an interpolating
polynomial.

In some applications, such as the numerical solution of two-point boundary value
problems (see, e.g., [6]), one may choose the points more or less at will; in that case,
one will place them so as to reach the best compromise between two often conflicting
goals: points good for interpolation, on one side, and points favourable for the condition
of the problem to be solved, on the other side. In [5], we have considered equidistant
and Ceby§ev points, the first for their regularity, the second for the condition of the
interpolation and for the fast convergence of the interpolant for very smooth functions.
For the solution of two-point boundary problems in [6] we have merely used (eby~ev
points.
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There is in general no reason besides the problem condition for accumulating the
nodes toward the boundary, as with Ceby~ev or Legendre points. Moreover, one of the
reasons for using rational instead of polynomial interpolation is its better suitability for
approximating functions with large slopes. Here too, shifting the points away from the
center may not be appropriate.

Another odd consequence of accumulating interpolation points toward the extremities
is the consequent ill-conditioning of the derivatives of the interpolating polynomials [7, 1].
This worsens the stability properties of time-stepping in the solution of time evolution
problems with the method of lines [13] as well as the convergence of iterative methods
for solving discretized stationary problems [3].

To address these difficulties, we will take advantage here of the fact that the fast con-
vergence of the interpolant can be maintained while shifting the points with a conformal
map g (independent of N) toward an equidistant position. This, however, requires an
important change to the method in [5], because this point shift ruins the exponential
convergence of the Ceby~ev interpolating polynomial. We therefore use here as the start-
ing interpolant the polynomial interpolating f(g- 1) in the domain of the inverse g- 1 of
the conformal map employed for the point shift, and attach poles to this polynomial.

Section 2 reviews the formulae and advantages of shifting Ceby~ev points conformally
toward the center of the interval when interpolating functions, and Section 3 briefly re-
calls the method of optimally attaching poles to the interpolating polynomial introduced
in our earlier work. In Section 4 we describe how to take advantage of the better condi-
tioning of derivatives induced by the conformal point shift; the corresponding practical
improvements are finally documented with numerical examples.

2 Rational interpolation with a variable change for point shifts
Let Pm and l m,n, respectively, denote the linear space of all polynomials of degree at
most m and the set of all rational functions with numerator in Pm and denominator in
P'; furthermore, denote by fk the interpolated values f(xk), k = O(1)N, off. Then, the
unique polynomial p E PN that interpolates f at the Xk's,

N

p(x) = fkLk(x), Lk(X) := (X Xi) (Xk X

k=O i#k i5k

can be written in its barycentric form [9]

NN

p(x) = E -k i Xk (2.1)
k=O k=O

where the so-called weight wk corresponding to the point Xk is given by

N

i=O, i$k

Despite its appearance, (2.1) determines a polynomial of degree at most N: the wk

are precisely the numbers which guarantee this [4]. By choosing other wk's, a rational
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interpolant is constructed.

The barycentric formula has several advantages over other representations of the
interpolating polynomial ([4] p. 357). One of them is the fact that the weights appear in
both the numerator and the denominator, so that they can be divided by any common
factor. For example, simplified weights for Cebygev points of the first kind P )  cos C,

2k-+1() - k
where k= 2(n+1) r and k = 0,...,N, are given by Wk11 = (-1)ksin k ([91 p. 249),

while for the Cebygev points of the second kind x (2) := cos k - which will be used here
- one simply has Salzer's formula ([9] p. 252)

2)
= (-l)kk, = { 1/2, k= ork=N,

These points are, together with Legendre's, the most used nodes for global polynomial
interpolation and large N. They achieve exponential convergence of p toward f if the
latter is analytic in an ellipse Ep with foci at ±1 and sum of its axes equal to 2p, p > 1.
However, this fast convergence comes at the cost of a concentration of the nodes in
the vicinity of the extremities of I. As mentioned above, this accumulation may have
drawbacks, such as poor spreading of the information about f over the interval and
ill-conditioning of the derivatives near the endpoints.

With a suitable choice of the interpolant, one may conformally shift the nodes to-
ward an equidistant position (though not all the way) without losing the exponential
convergence. For that purpose, one considers, beside the x-space in which f is to be
approximated, another space, denoted by y, say, and the N + 1 eby~ev points of the
second kind

=(2)
Yk = Xk

in the interval J := [-1, 1] in this y-space. Let g be a conformal map from a domain Di
containing J (in the y-space) to a domain D2 containing I (in the x-space); moreover,
suppose that f is a function )2' - C such that the composition fog : Dit-4 C is analytic
in an ellipse Ep, as defined above. With this map we may define new interpolation points
on I, Xk = g(Yk), as well as the conformal transplantation F(y) := f(x) [10] of f into
the y-space.

Then, with the polynomial interpolating F(y) at the Yk

N N

AN(y) := ZF(yk)Lk(y) = E f(xk)Lk (g-1 (x)) =: aN(X), (2.2)
k=O k=O

one has
IaN(X) - f(x) = 0(P-N), x E [-1,1].

Rational interpolation with all poles prescribed is very simple in the barycentric setting
[5]: the P poles zi are attached to (2.1) by replacing wk with

P

bk = Wkdk, dk := II(xk - zi).

i=1
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If N > P this results in a rational interpolant in IZN,P with poles at zi, i = 1,..., P
(when such an interpolant exists, see [5]).

Remark 2.1 Exponential convergence of interpolation at the shifted points is also at-
tained with the rational function given by (2.1) With Wk = Wk2) [2]. However, this is
in general a rational function in JZN,,, v > N - P: there is not enough defect in the

denominator degree for the weights wk2 )dk to warrant the presence of the P poles zi.

We then use aN as the starting interpolant to which we attach the poles vi in the
y-space. This yields

P P

N wk fl(Yk -V) N wk l- (g-(xk)- g-l(Zi)

-yk A

R(y) k=O :kO r(x).P P

k-0 Y k kS -

_= -Y k=O g- 1 (X) - g- 1 (Xk)

If a rational interpolant with these poles exists, it is given in the y-space by R, and r is
a rational function in the argument g-(x). Its poles are at zi = g(vi).

3 Construction of the optimal interpolant

Our method consists in optimizing the position of the v 's so as to minimize

IR - F1I = ir - f 11,

as described in §3 of [5]. Optimal vi's always exist, but these are not unique in general.
Whether the optimal R is unique is an open question; however, for every optimized pole
vi an indicator may be calculated which, if nonzero, guarantees that vi is indeed a pole
of R.

In the practical computations documented in §5 the optimization of the vi's was
performed using the same two algorithms as in [5]: for small N we used a discrete differ-
ential correction algorithm according to [11], while for larger N the simulated annealing
method of [8] was applied. Both methods will in principle locate a desired global maxi-
mum. The first method achieves it in a systematic and guaranteed way evaluating the
error not continuously but on a fine grid; the simulated annealing method cannot be
guaranteed to find the global extremum but, when used for an extensive search, will
produce a reasonable approximation of it.

As mentioned in [5], our way of attaching poles to the interpolating polynomial has a
very nice property: the approximation error can only decrease or at worst stay constant
with a growing number of poles, this in sharp contrast with classical rational interpola-
tion; when a new unknown, say vj, is added to the set of variables, {V..., vj-1}, the
optimal values of the latter are a feasible vector for the higher dimensional optimization.

Let us conclude this section with a comment on the use of the nomenclature "at-
taching the poles". In classical rational interpolation, the poles of the interpolant are
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determined by the data. There too, however, one sometimes wishes to prescribe the loc-
ation of the poles (with corresponding decrease of the number of degrees of freedom):
many authors then speak of "assigning", or "prescribing" the poles. In that sense one
cannot "assign" poles to a polynomial, which obviously cannot have poles. We thus
start with the interpolating polynomial and its poles at infinity and make it a rational
interpolant by bringing the poles into an optimal position in C. We call this procedure
"attaching poles", to distinguish it from the process of forcing a rational function to
have a pole at a particular place.

4 Derivatives of the optimal interpolant with shifted points

As mentioned in §1, one of the reasons for shifting the points from their (ebygev position
toward the interior of the interval is the improvement of the condition of the derivatives
resulting from such a shift. Besides r, we will evaluate also r' and r" as approximants of
f', resp. f", and estimate hr - f'Ik. and hr - f"Il.

Schneider and Werner [14] have noticed that every rational interpolant R E lZNN,

written in its barycentric form

R(y)=ZE Uk Nfl ,U

k=o Y - Yk k=O Y - Yk

can easily be differentiated. The formulae for the first two derivatives read
N Nknyy]Z

Uk RIyYk] E U. , y 5 yi, i = 0(1)N,

k= O Y - Yk k=o yYk

k=0 )ui, Y = Yi

k~i

and

2 UkY R[YYy,. ] uk , y 4 Yi, i= 0(1)N,

= (y)Yk = Y--Yk

1-2 (E UkR[yi,YYk])/i
k=" l(y) = i

kO

with R[z, z, Yk] = R'(z)-R[z,k]. The chain rule then yields, for r(x) = R(.-'(x))

r'(x) = R'(y). [g-(x)]' = R'(y) r// = 1 'R"(y) - MY (y). (4.1)
g,( , [(,(y)]- [ ,(y

Specifically, in our calculations we have used the map suggested by Kosloff and Tal-Ezer
[12],

g(y) = arcsin(cay) 0 < a < 1.
arcsin a
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a P=0 P=2 P=4 P =6 P=8

0.0 6.37e - 5 1.42e - 6 5.83e - 8 9.38e - 9 1.30e - 9
0.5 3.11e - 5 6.69e - 7 2.48e - 8 4.21e - 9 4.23e - 10

0.75 8.06e - 6 1.60e - 7 5.50e - 9 9.47e - 10 1.27e - 10
0.9 1.12e - 6 1.97e - 8 5.90e - 10 3.94e - 11 2.05e - 11

0.95 2.78e - 7 4.47e - 9 1.29e - 10 1.36e - 11 3.82e - 12
0.96 1.85e - 7 2.93e - 9 8.27e - 11 4.20e - 12 3.88e - 12

TAB. 1. Errors when approximating f with increasing P and a in Example 1.

In the limiting cases, a - 0 keeps the points at their Cebyev position, whereas a - 1
renders them equidistant. The derivatives of g are given by

a 1 ,(Y) 3  y

arcsina ,1 - (ay)2 ' arcsina (1 - (Cy)2) 3

so that in (4.1)

[g,(y)] 3  (arcsin 2 a)y.

5 Numerical evidence

We now report on practical computations, performed on two examples, which demon-
strate the efficiency of point shifts for improving the rational interpolants with optimized
denominators. These examples share the property that the difficult part of f lies in the
center of I, so that the shift of the points toward a more equidistant position naturally
improves the quality of the information provided to the interpolation method.

a P=0 P =2 P =4 P =6 P=8

0.0 5.27e - 3 1.26e - 3 4.85e - 6 8.69e - 7 1.40e - 7

0.5 2.67e - 3 5.87e - 4 2.33e - 6 4.03e - 7 4.63e - 8

0.75 7.47e - 4 1.49e - 5 5.16e - 7 9.44e - 8 1.30e - 8
0.9 1.14e - 4 2.01e - 6 6.56e - 8 4.28e - 9 2.16e - 9

0.95 2.97e - 5 4.99e - 7 1.48e - 8 1.59e - 9 4.52e - 10
0.96 2.01e - 5 3.24e - 7 9.52e - 9 4.80e - 10 4.70e - 10

TAB. 2. Errors when approximating f' with increasing P and a in Example 1.

The sup-norm K has thereby been estimated by considering the 1000 equally
spaced points t = -, + L-1 10,= 1(1)1000, on the interval [-5/4, 5/4] and computing
the maximal absolute value of the error at those h lying in [-1, 1].

Example 5.1 We have first revisited Example 3 of [51, which displays in the center of
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I a slope increasing with a positive parameter, here denoted by C,

erf(x)f(x) = cos 7rx + e(----, J = --5,
CSX+erf(6)

where erf denotes the error function (see [5] for a graph).

In Table 1 we give the results obtained with f = 500 and N = 81, increasing numbers
P of poles and increasing a. Tables 2 and 3 display the same information for the appro-
ximation of f' and f" with r' and r" as given by the formulae (4.1). The combination
of extra poles and a point shift brings about 7 digits of accuracy, where the point shift
alone makes only for 2-3. The improvement in the derivatives is especially remarkable:
the error in the second derivative decreases from the useless value of 9.26 to about 10-7!

a P=0 P=2 P=4 P=6 P=8

0.0 9.26 4.05e - 2 4.82e - 4 7.85e - 5 1.46e - 5
0.5 4.26 2.07e - 2 2.18e - 4 3.75e - 5 4.91e - 6

0.75 9.50e - 1 5.48e - 3 6.25e - 5 9.53e - 6 1.26e - 6
0.9 9.30e - 2 6.49e - 4 8.86e - 6 4.93e - 7 2.34e - 7

0.95 1.59e - 2 1.23e - 4 1.88e - 6 1.75e - 7 5.31e - 8
0.96 9.18e - 3 7.36e - 5 1.29e - 6 6.00e - 8 5.57e - 8

TAB. 3. Errors when approximating f" with increasing P and a in Example 1.

Example 5.2 Example 3 in [5] has demonstrated that the attachment of poles may be
very effective in improving the approximation of oscillatory functions. Here we change
the function to

h(x) = e- a 2 sin bx, a >O, b>O,

so that the most oscillatory part lies in the center of the interval.

Results with a = 5, b = 25, N = 31, P = 0 and P = 2 are given in Table 4. In contrast
with the preceding example, here the point shift brings much more improvement than the
attachment of poles, about 6-7 digits, an especially heartening fact for the derivatives,
to which the interpolants without shift are useless approximants.

Acknowledgement: The authors wish to thank Peter Graves-Morris for his comments
which have enhanced the present text.
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